3 načini reševanja kvadratnih enačb

Kazalo:

3 načini reševanja kvadratnih enačb
3 načini reševanja kvadratnih enačb

Video: 3 načini reševanja kvadratnih enačb

Video: 3 načini reševanja kvadratnih enačb
Video: Сьюзан Кейн: Сила интровертов 2024, November
Anonim

Kvadratna enačba je enačba, katere najvišja stopnja je 2 (na kvadrat). Obstajajo trije glavni načini za reševanje kvadratne enačbe: če je mogoče, faktoring kvadratne enačbe uporabite kvadratno formulo ali izpolnite kvadrat. Če želite obvladati te tri metode, sledite tem korakom.

Korak

Metoda 1 od 3: Faktoring faktorjev

Rešite kvadratne enačbe 1. korak
Rešite kvadratne enačbe 1. korak

Korak 1. Združite vse enake spremenljivke in jih premaknite na eno stran enačbe

Prvi korak k faktoringu enačbe je premakniti vse enake spremenljivke na eno stran enačbe z x2je pozitivno. Če želite združiti spremenljivke, dodajte ali odštejte vse spremenljivke x2, x in konstante (cela števila) jih premaknite na drugo stran enačbe, tako da na drugi strani ne ostane nič. Če druga stran nima preostalih spremenljivk, zraven znaka enakosti napišite 0. To storite tako:

  • 2x2 - 8x - 4 = 3x - x2
  • 2x2 +x2 - 8x -3x - 4 = 0
  • 3x2 - 11x - 4 = 0
Rešite kvadratne enačbe 2. korak
Rešite kvadratne enačbe 2. korak

Korak 2. To enačbo faktorja

Za faktorjenje te enačbe morate uporabiti faktor x2 (3) in konstantni faktor (-4), ki jih pomnožimo in dodamo, da se spremenljivka prilega sredini, (-11). To storite tako:

  • 3x2 ima samo en možen faktor, 3x in x, lahko jih zapišete v oklepaju: (3x +/-?) (x +/-?) = 0.
  • Nato uporabite postopek izločanja za faktor 4, da poiščete produkt, ki daje -11x. Uporabite lahko zmnožek 4 in 1 ali 2 in 2, ker ko pomnožite oboje, dobite 4. Toda ne pozabite, da mora biti eno od številk negativno, ker je rezultat -4.
  • Poskusite (3x + 1) (x - 4). Ko pomnožite, je rezultat - 3x2 -12x +x -4. Če združite spremenljivki -12 x in x, je rezultat -11x, kar je vaša srednja vrednost. Pravkar ste upoštevali kvadratno enačbo.
  • Poskusimo na primer faktoriti drugi produkt: (3x -2) (x +2) = 3x2 +6x -2x -4. Če združite spremenljivke, je rezultat 3x2 -4x -4. Čeprav faktorji -2 in 2 pri množenju dobita -4, povprečje ni enako, ker želite dobiti vrednost -11x namesto -4x.
Rešite kvadratne enačbe 3. korak
Rešite kvadratne enačbe 3. korak

Korak 3. Predpostavimo, da je vsak oklepaj nič v drugačni enačbi

Tako boste našli 2 x vrednosti, zaradi katerih bo vaša enačba nič. Enačbo ste upoštevali, zato morate le domnevati, da je izračun v vsakem oklepaju enak nič. Tako lahko zapišete 3x + 1 = 0 in x - 4 = 0.

Rešite kvadratne enačbe 4. korak
Rešite kvadratne enačbe 4. korak

Korak 4. Vsako enačbo rešite posebej

V kvadratni enačbi obstajata 2 vrednosti za x. Vsako enačbo rešite ločeno s premikanjem spremenljivk in zapisom dveh odgovorov za x, takole:

  • Reši 3x + 1 = 0

    • 3x = -1….. z odštevanjem
    • 3x/3 = -1/3….. z deljenjem
    • x = -1/3….. s poenostavitvijo
  • Reši x - 4 = 0

    x = 4….. z odštevanjem

  • x = (-1/3, 4)….. tako, da ločite več možnih odgovorov, kar pomeni, da sta x = -1/3 ali x = 4 oba pravilna.
Rešite kvadratne enačbe 5. korak
Rešite kvadratne enačbe 5. korak

Korak 5. Preverite x = -1/3 in (3x + 1) (x -4) = 0:

Tako dobimo (3 [-1/3] + 1) ([-1/3]-4)? =? 0….. z zamenjavo (-1 + 1) (-4 1/3)? =? 0….. s poenostavitvijo (0) (-4 1/3) = 0….. z množenjem Torej, 0 = 0….. Da, x = -1/3 je res.

Rešite kvadratne enačbe 6. korak
Rešite kvadratne enačbe 6. korak

Korak 6. Preverite x = 4 in (3x + 1) (x - 4) = 0:

Tako dobimo (3 [4] + 1) ([4] - 4)? =? 0….. z zamenjavo (13) (4 - 4)? =? 0….. s poenostavitvijo (13) (0) = 0….. z množenjem Torej, 0 = 0….. Da, x = 4 je tudi res.

Torej, po ločenem preverjanju sta oba odgovora pravilna in jih je mogoče uporabiti v enačbah

Metoda 2 od 3: Uporaba kvadratne formule

Rešite kvadratne enačbe 7. korak
Rešite kvadratne enačbe 7. korak

Korak 1. Združite vse enake spremenljivke in jih premaknite na eno stran enačbe

Vse spremenljivke premaknite na eno stran enačbe z vrednostjo spremenljivke x2 pozitivno. Zapišite spremenljivke z zaporednimi eksponenti, tako da bo x2 najprej zapisano, sledijo spremenljivke in konstante. To storite tako:

  • 4x2 - 5x - 13 = x2 -5
  • 4x2 - x2 - 5x - 13 +5 = 0
  • 3x2 - 5x - 8 = 0
Rešite kvadratne enačbe 8. korak
Rešite kvadratne enačbe 8. korak

Korak 2. Zapišite kvadratno formulo

Kvadratna formula je: b ± b2−4ac2a { displaystyle { frac {-b / pm { sqrt {b^{2} -4ac}}} {2a}}}

Rešite kvadratne enačbe 9. korak
Rešite kvadratne enačbe 9. korak

Korak 3. Določite vrednosti a, b in c iz kvadratne enačbe

Spremenljivka a je koeficient x2, b je koeficient spremenljivke x, c pa konstanta. Za enačbo 3x2 -5x -8 = 0, a = 3, b = -5 in c = -8. Zapiši vse tri.

Rešite kvadratne enačbe 10. korak
Rešite kvadratne enačbe 10. korak

Korak 4. V enačbo nadomestite vrednosti a, b in c

Ko poznate tri spremenljive vrednosti, jih vključite v enačbo, kot je ta:

  • {-b +/- √ (b2 - 4ac)}/2
  • {-(-5) +/-√ ((-5)2 - 4(3)(-8))}/2(3) =
  • {-(-5) +/-√ ((-5)2 - (-96))}/2(3)
Rešite kvadratne enačbe 11. korak
Rešite kvadratne enačbe 11. korak

Korak 5. Izvedite izračune

Ko vnesete številke, naredite nekaj matematike, da poenostavite pozitivni ali negativni predznak, pomnožite ali kvadrat preostale spremenljivke. To storite tako:

  • {-(-5) +/-√ ((-5)2 - (-96))}/2(3) =
  • {5 +/-√(25 + 96)}/6
  • {5 +/-√(121)}/6
Rešite kvadratne enačbe 12. korak
Rešite kvadratne enačbe 12. korak

Korak 6. Poenostavite kvadratni koren

Če je število pod kvadratnim korenom popoln kvadrat, dobite celo število. Če število ni popoln kvadrat, poenostavite na najpreprostejšo korensko obliko. Če je število negativno in menite, da bi moralo biti negativno, bo osnovna vrednost zapletena. V tem primeru je (121) = 11. Lahko napišete x = (5 +/- 11)/6.

Rešite kvadratne enačbe 13. korak
Rešite kvadratne enačbe 13. korak

Korak 7. Poiščite pozitivne in negativne odgovore

Ko odstranite znak kvadratnega korena, lahko poiščete pozitiven in negativen rezultat za x. Zdaj, ko imate (5 +/- 11)/6, lahko napišete 2 odgovora:

  • (5 + 11)/6
  • (5 - 11)/6
Rešite kvadratne enačbe Korak 14
Rešite kvadratne enačbe Korak 14

Korak 8. Izpolnite pozitivne in negativne odgovore

Izvedite matematične izračune:

  • (5 + 11)/6 = 16/6
  • (5-11)/6 = -6/6
Rešite kvadratne enačbe Korak 15
Rešite kvadratne enačbe Korak 15

Korak 9. Poenostavite

Če želite poenostaviti vsak odgovor, ga delite z največjim številom, ki lahko deli obe številki. Prvi ulomek delite z 2, drugega pa s 6, in našli ste vrednost x.

  • 16/6 = 8/3
  • -6/6 = -1
  • x = (-1, 8/3)

Metoda 3 od 3: Dopolnite kvadrat

Rešite kvadratne enačbe Korak 16
Rešite kvadratne enačbe Korak 16

Korak 1. Vse spremenljivke premaknite na eno stran enačbe

Prepričajte se, da je a ali spremenljivka x2 pozitivno. To storite tako:

  • 2x2 - 9 = 12x =
  • 2x2 - 12x - 9 = 0

    V tej enačbi je spremenljivka a 2, spremenljivka b je -12 in spremenljivka c je -9

Rešite kvadratne enačbe Korak 17
Rešite kvadratne enačbe Korak 17

Korak 2. Premaknite spremenljivko ali konstanto c na drugo stran

Konstante so številski izrazi brez spremenljivk. Premaknite se na desno stran enačbe:

  • 2x2 - 12x - 9 = 0
  • 2x2 - 12x = 9
Rešite kvadratne enačbe Korak 18
Rešite kvadratne enačbe Korak 18

Korak 3. Obe strani delite s koeficientom a ali spremenljivko x2.

Če x2 nima spremenljivke in je koeficient 1, lahko ta korak preskočite. V tem primeru morate vse spremenljivke razdeliti na 2, na primer:

  • 2x2/2 - 12x/2 = 9/2 =
  • x2 - 6x = 9/2
Rešite kvadratne enačbe Korak 19
Rešite kvadratne enačbe Korak 19

Korak 4. Delimo b z 2, ga kvadratimo in dodamo rezultat na obe strani

Vrednost b v tem primeru je -6. To storite tako:

  • -6/2 = -3 =
  • (-3)2 = 9 =
  • x2 - 6x + 9 = 9/2 + 9
Rešite kvadratne enačbe 20. korak
Rešite kvadratne enačbe 20. korak

Korak 5. Poenostavite obe strani

Če spremenite spremenljivko na levi strani, dobite (x-3) (x-3) ali (x-3)2. Dodajte vrednosti na desni, da dobite 9/2 + 9 ali 9/2 + 18/2, kar je 27/2.

Rešite kvadratne enačbe 21. korak
Rešite kvadratne enačbe 21. korak

Korak 6. Poiščite kvadratni koren za obe strani

Kvadratni koren (x-3)2 je (x-3). Kvadratni koren 27/2 lahko zapišete kot ± √ (27/2). Tako je x - 3 = ± √ (27/2).

Rešite kvadratne enačbe Korak 22
Rešite kvadratne enačbe Korak 22

Korak 7. Poenostavite korenine in poiščite vrednost x

Če želite poenostaviti ± √ (27/2), poiščite popoln kvadrat med številima 27 in 2 ali to številko faktorja. Popoln kvadrat 9 je mogoče najti v 27, ker je 9 x 3 = 27. Če želite vzeti 9 iz kvadratnega korena, vzemite 9 iz korena in napišite 3, kvadratni koren, zunaj kvadratnega korena. Preostanek 3 pustite v števcu ulomka pod kvadratnim korenom, saj 27 ne upošteva vseh faktorjev, spodaj pa zapišite 2. Nato premaknite konstanto 3 na levi strani enačbe v desno in napišite dve rešitvi za x:

  • x = 3 +(√6)/2
  • x = 3 - (√6)/2)

Nasveti

  • Kot lahko vidite, korenske oznake ne bodo popolnoma izginile. Tako številskih spremenljivk ni mogoče združiti (ker niso enake). Nima smisla ločevati na pozitivno ali negativno. Lahko pa ga razdelimo na isti faktor, vendar SAMO če so faktorji enaki za obe konstanti IN koreninski koeficient.
  • Če številka pod kvadratnim korenom ni popoln kvadrat, so zadnji koraki nekoliko drugačni. Tukaj je primer:
  • Če je b sodo število, formula postane: {-(b/2) +/- (b/2) -ac}/a.

Priporočena: