Vrh enačbe kvadratne ali parabole je najvišja ali najnižja točka enačbe. Ta točka je znotraj simetrične ravnine parabole; kar je levo od parabole, je popoln odraz vsega, kar je desno. Če želite najti točko kvadratne enačbe, lahko uporabite formulo za točko ali dokončate kvadrat.
Korak
Metoda 1 od 2: Uporaba formule Peak

Korak 1. Določite vrednosti a, b in c
V kvadratni enačbi je del x2 = a, del x = b in konstanta (del brez spremenljivk) = c. Na primer, želite rešiti naslednjo enačbo: y = x2 + 9x + 18. V tem primeru je a = 1, b = 9 in c = 18.

Korak 2. S formulo za vertex poiščite x vrednost oglišča
Točka je tudi simetrična enačba. Formula za iskanje vrednosti x oglišča kvadratne enačbe je x = -b/2a. Vnesite zahtevano vrednost, da poiščete x. Vnesite vrednosti a in b. Zapišite, kako delate:
- x = -b/2a
- x =-(9)/(2) (1)
- x = -9/2

Korak 3. Priključite vrednost x v prvotno enačbo, da dobite vrednost y
Če že poznate vrednost x, jo vključite v prvotno enačbo za vrednost y. Formulo za iskanje ogljika kvadratne enačbe si lahko omislite kot (x, y) = [(-b/2a), f (-b/2a)]. To pomeni, da morate za iskanje vrednosti y poiskati vrednost x s formulo in jo znova vključiti v enačbo. To storite tako:
- y = x2 + 9x + 18
- y = (-9/2)2 + 9(-9/2) +18
- y = 81/4 -81/2 + 18
- y = 81/4 -162/4 + 72/4
- y = (81 - 162 + 72)/4
- y = -9/4

Korak 4. Zapišite vrednosti x in y kot zaporedna para
Če že veste, da je x = -9/2 in y = -9/4, jih zapišite kot zaporedne pare: (-9/2, -9/4). Vrh kvadratne enačbe je (-9/2, -9/4). Če to parabolo narišete na graf, je ta točka najnižja/najnižja točka parabole, ker je x2 pozitivno.
Metoda 2 od 2: Dopolnite kvadrat

Korak 1. Zapišite enačbo
Dokončanje kvadrata je še en način za iskanje temelja kvadratne enačbe. S to metodo, če delate vse do konca, lahko neposredno najdete koordinate x in y, ne da bi morali koordinate x vključiti v prvotno enačbo. Če želite rešiti naslednjo kvadratno enačbo: x2 + 4x + 1 = 0.

Korak 2. Vsak del razdelite s koeficientom x2.
V tem primeru je koeficient x2 je 1, zato lahko ta korak preskočite. Če vse dele delite z 1, se nič ne spremeni.

Korak 3. Premaknite del konstant na desno stran enačbe
Konstanta je del, ki nima koeficientov. V tem primeru je konstanta 1. Premaknite 1 na drugo stran enačbe tako, da odštejete 1 od obeh strani. To storite tako:
- x2 + 4x + 1 = 0
- x2 + 4x + 1 -1 = 0 - 1
- x2 + 4x = - 1

Korak 4. Dopolnite kvadrat na levi strani enačbe
Če želite to narediti, poiščite (b/2)2 in rezultat dodamo na obe strani enačbe. Vnesite 4 za b, ker je 4x del b v tej enačbi.
-
(4/2)2 = 22 = 4. Zdaj dodajte 4 na obe strani enačbe, da dobite nekaj takega:
- x2 + 4x + 4 = -1 + 4
- x2 + 4x + 4 = 3

Korak 5. Levo stran enačbe faktorja
Vidite lahko x2 + 4x + 4 je popoln kvadrat. To enačbo lahko zapišemo kot (x + 2)2 = 3

Korak 6. S to obliko poiščite koordinate x in y
Koordinato x lahko najdete tako, da naredite (x + 2)2 enako nič. Torej, ko (x + 2)2 = 0, koliko je vrednost x? Spremenljivka x mora biti -2, da kompenzira +2, zato je vaša koordinata x -2. Vaša y-koordinata je konstanta na drugi strani enačbe. Torej, y = 3. Lahko ga tudi skrajšate in zamenjate številko v oklepaju, da dobite koordinato x. Torej, vrh enačbe x2 + 4x + 1 = (-2, -3)
Nasveti
- Pravilno določite a, b in c.
- Vedno zapišite, kako delate. Ne samo, da oseba, ki vam daje oceno, ve, če razumete, kaj počnete, ampak tudi pomaga preveriti, ali ste naredili kakšno napako.
- Za pravilnost rezultatov je treba upoštevati vrstni red računskih operacij.
Opozorilo
- Zapišite in preverite, kako delate!
- Prepričajte se, da poznate a, b in c - sicer bo vaš odgovor napačen.
- Naj vas ne razočara - to lahko traja nekaj prakse.